Software Engineering Institute | Carnegie Mellon University © 2014 Carnegie Mellon University

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
01 OCT 2014 N/A -
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
M od_el-D.r|ven Verifying Compilation of Synchronous Distributed £b. GRANT NUMBER
Applications

5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

Sagar Chaki James Edmondson 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Softwar e Engineering I nstitute Car negie M ellon University Pittsburgh, REPORT NUMBER

PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE SAR 24
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted
below.

This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0001691

Model-Driven Verifying Compilation

—— Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Outline

Motivation

- Approach

- Sequentialization : SEQSEM & SEQDBL
- Examples

- Experimental Results

- Synchronizer Protocol : 2BSYNC

- Tool Overview & Demo

Future Work

Model-Driven Verifying Compilation

—— Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Motivation

Distributed algorithms have always been important
* File Systems, Resource Allocation, Internet, ...

Increasingly becoming safety-critical
« Robotic, transportation, energy, medical

Prove correctness of distributed algorithm
Implementations

« Pseudo-code is verified manually (semantic gap)
* Implementations are heavily tested (low coverage)

Model-Driven Verifying Compilation

——= Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 1,2014

© 2014 Carnegie Mellon University

Approach : Verification + Code Generation

Program in Domain Specific Language
A

| 1
Distributed Safety
Application Specification
—_— \/
[ebug Appiication, }(—{ Verification |
Refine Specification Failure The Verifying Compiler:

lSUCCGSS A Grand Challenge for
p— computing research

[Code } Tony Hoare

Generation
l —
[Binary]

—

Run on Physical Run within
Device simulator

Model-Driven Verifying Compilation

——= Software Engineering Institute H Carnegie Mellon University Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Verification Model Checking

Program in Domain Specific Language

A
| 1
Distributed Safety
Application Specification : ,
\ / Automatic verification technique for finite
state concurrent systems.
. Developed independently by Clarke and
Sequentialization] Emerson and by Queille and Sifakis in
early 1980’s.
¢ . ACM Turing Award 2007
Assume)
Model of C Program Specifications are written in propositional
Computation temporal logic. (Pnueli 77)
. Computation Tree Logic (CTL), Linear
Software Model Checking Temporal Logic (LTL), ...
(CBMC, BLAST etc.)
Verification procedure is an intelligent
exhaustive search of the state space of
Failure Success the design

Model-Driven Verifying Compilation

——= Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 1,2014

— © 2014 Carnegie Mellon University

Code Generation

MADARA Middleware

Program in Domain Specific Language

l A database of facts: DB = Var ~
Value
| 1
Distributed Safety Node i has a local copy: DB;
Application Specification * update DB; arbitrarily
\ / » publish new variable mappings
\/ « Immediate or delayed
[Add synchronizer protocol] * Multiple variable mappings
transmitted atomically
Guarantee Implicit “receive” thread on each node
Synczrolnofus | C++/MADARA Program | « Receives and processes variable
c s Rel i updates from other nodes
omputatlon
_ « Updates ordered via Lamport
Compile clocks
(g++,clang,MSVC, etc.)
I Portable to different OSes (Windows,
V Linux, Android etc.) and networking
. technology (TCP/IP, UDP, DDS etc.)
[Binary]

Model-Driven Verifying Compilation
——= Software Engineering Institute H Carnegie Mellon University ~ Sagar Chaki, October 1,2014

© 2014 Carnegie Mellon University

Synchronous Distributed Application (SDA)
Node 0 = fo() Shared Variables:GV = GV[0],GV[1] Node 1= f;()

/ Gk \
Round 1 | GV4[0] = fo(GVq) GV1[1] = f1(GVy)
Round?2 | GV,[0] = fo(GV7) GV,[1] = f1(GVy)
/ L \
Roundi | GV;[0] = fo(GVis) GV;[1] = f1(GV;_1)

Model-Driven Verifying Compilation

——= Software Engineering Institute H Carnegie Mellon University Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

SDA Verification

Program with n nodes : P(n)
« Each node has a distinct id € [1,n]
* Array GV has n elements, GV[i] writable only by node with id i
« Each element of GV is drawn from a finite domain

In each round, node with id id executes function p whose body is a statement

stmt := skip | lval = exp (assignment)
| ITE (exp, stmt,stmt) (if,then,else)
| ALL(IV, stmt) (iterate over nodes : use to check existence)
| (stmt™) (iteration of statements)
lval := GV[id][w] (lvalues)
exp:=T|L|lval | GV[iv][w] |id | IV | o (exp™) (expressions)

Initial states and “ERROR” states of the program are define
« State = value assigned to all variables

Verification = decide if there is an execution of the program that starts in an initial
state and ends in an ERROR state

Model-Driven Verifying Compilation

——= Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 1,2014

© 2014 Carnegie Mellon University

Semantic Sequentialization: SEQSEM
Node 0 = fo() Shared Variables:GV = GV[0],GV[1] Node 1 = f,()

Assume n nodes
Use n copies of GV GV, GV,

-

1

GV,,_

GV411] GVpqln—1]=

0(112) fl (le) fn—l(GVn—l)

variables =
State Explosio] GV,li] = GV, 4[i] =
GVli], GV;[i],
i #1 izn—1
Round 1 _ll, ll , ‘ll

> GVO GVl € GVn—l D J—

Operations have independentce = reordered sequentially.

—== ifyi 1
= -l Roundsarerepeatedina loop gfti,t,ye?glcz%?f er

ZuL% Cdlliegie Mellon Un sity

Double Buffering Sequentialization: SEQDBL
Node 0 = fo() Shared Variables:GV = GV[0],GV[1] Node 1 = f,()

Use 2 copies of GV
Use each copy as input GV,
in alternate rounds

Rouna1 | &/ = GV4]1] = GViln—1] =
oun fo(GVy) f1(GVy) Far(GV0)

o(n) 3
variables GVy
GVy[0] = GVol1] = GVo[n—1] =
Round 2 - - R
fo(GV4) f1(GV4) Frn_1(GV1)

Model-Driven Verifying Compilation

== Software Engineering Institute | Carnegie Mellon University —Sagar Chaki, October 1, 2014

— © 2014 Carnegie Mellon University

Example: 2D Synchronous Collision Avoidance

&

(0,3) (3,3)

@ " Reserve F====_Reserve | Reserve |

(0.0 Iz> (3.0)

Model-Driven Verifying Compilation

——= Software Engineering Institute H Carnegie Mellon University Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Example: 2D Synchronous Collision Avoidance

[Reserve }
o Reserve | >

-

| Reserve

(0.0 Iz> (3.0)

Model-Driven Verifying Compilation

——= Software Engineering Institute H Carnegie Mellon University = Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Example: 2D Synchronous Collision Avoidance

&

(0,3) (3,3)

Reservation \
Contention
Resolved based
on Node ID. No
collision
possible if no

/Kover-booking./

Potential
Collision

(0,0) (3,0)

Model-Driven Verifying Compilation

—— Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

2D Collision Avoidance Protocol

If no other node is
locking the next
coordinate

If time to move to
next coordinate

Reached the next
coordinate

If no other node
“with higher id” is
trying to lock the

next coordinate

Moving to the

Other Examples
next coordinate

3D Collision Avoidance

%% Software Engineering Institute H Carnegie Mellon Uniy Mutual Exclusion

Results: 3D Collision Avoidance

ADCOLL-OK-4x4 JDCOLL-OK-TxT
R|(Ts|Tp|Ts|Tp| Ts |Tp||Ts|Th| Ts |Tp| Ts |Tp
n=2| n=4{ n==ob n =32 n =4 n =6

10113 (10| 59 [40 | 219 | 96 || 31 | 35 | 323 |148]|1099|323
2013731 |351|123|1014|480(| 73 | 72 |1262(401

30|48 | 48 (406|202 1421113
pn=2.213 a=0.715 pu=2.294 o=0.763
3DCOLL-BUG-4x4 3DCOLL-BUG-TxT
Ts|Tp|Ts |Tp|Ts |To|(|Ts|Tp|Ts |To|Ts|To
n=2|n=4| n==6 n=2|n=4 |n==6
S 9 [49)36 (123196 | 22 |23 1194|114
24136 1191101 {4101210(| 57 | 76
421 44 206|155 117134
u=1.615 o0=0.425 wnw=1.514 o=0.344

SEQDBL Tg, Tp = model checking time with SEQSEM,SEQDBL

is better 3 _ Ts
= u,o=Avg,StDev of T

D

oy n=#ofnodes R=#ofrounds GXG=gridsize
T — & ZUl4 Ldllieyie vielulr Ul

ompilation

ICIE

Results: 2D Collision Avoidance

2DCOLL-OK-4x4 2DCOLL-BUG1-4x4 2DCOLL-BUG2-4x4
R|\Tg|Tp | Ts |Tp |Ts |Tp||Ts|Tp|(Ts|Tp|Ts|Tp||Ts|Tp|Ts|Tp|Ts |Th
n=>=2 n =4 n =06 n=2|n=4| n==~6 n=2|n=4| n==56
10017 25 | 87 [262 |280(831(| 3 | 2 [12(11 |30 (22| 4| 3 {1311 30|29
201123(271 (1474|2754 S| 7T |36|20|80 | 75| 8| 9 |33|33|76| 66
301863 (1301 1215|5751 |144|105(|16| 21 |57 | 77 |150(120
p=0.446 o=0.118 1n=1.282 o=0.264 pn=1.056 o=0.266
2DCOLL-OK-TxT 2DCOLL-BUG1-Tx7 2DCOLL-BUG2-TxT
Rl Ts |Tp |Ts | Tp | Ts (Tp||Ts|Tp|Ts|Tp|Ts |Tp||Ts|Tp|Ts T |Ts |Th
n =2 n = ¢ n==6 n=2| n=4 | n=6|[n=2|n=4| n==6
10{ 74 | 146 |395|1016(1707 717 (32124110170 || 5 |10] 26|36 |188[113
20(1726|3096 15 22| 94 | 55345150 19| 22| 71 [113|207|166
30 40| 35 |180] 91 223|146 68 [124]295(416(235
pu=0.598 =0.202 w=1.382 o=0.517 pn=>0.906 #=0.393
Depends Tg, Tp = model checking time with SEQSEM,SEQDBL
on the T
u,o = Avg,StDev of —

D ompilation

n=#of nodes R =#ofrounds GXG= grld swe

Results: Mutual Exclusion

MUTEX-OK MUTEX-BUGI
R|\Ts | Tp | Ts |Tp | Ts |Tp ([|Te|Tp|Ts |Tp | Ts | Th
n =6 n =8 n = 10 n = n = n = 10

60 | 406 | 396 1116|1051 |2388(2268([(184|175| 517 | 439 |1068| 959
80 | 850 | 806 |2268|1967(4525(4249((402|372|1013| 925 (2203|1812
10014041381 |3584(3452(T092(6T64((734 |686|1T26|1566|3513|3287
p=1.040 o=0.038 p=1.056 o=0.060

MUTEX-BUG?2
Ts|Tp| Ts |Tp | Ts | Th
SEQSdEM n==6 n=4=a n = 10
L 733216 637 | 553 [1202]1167
similar H00(462(1218(1112(|2602|12139
RO0(B38|2056(18260(4216|3742

pw=1.065 o=0.056

Tg, Tp = model checking time with SEQSEM,SEQDBL

Ty

u,o = Avg,StDev of T.
D _

ompilation

n=#of nodes R =#ofrounds GXG=gridsize ¥
& ZUl4 Ldllieyie vielulr Ul

rulivelsity

Synchronizer Protocol: 2BSYNC
Node 0 = fo() Shared Variables:GV = GV[0],GV[1] Node 1 = f,()

Use barrier E— I
GV b

variables: by, by GVo, bo 171
Initialized to 0

bO::b0+1 b1::b1+1
é bo' bll @
/Atomic Send. Either\ Barr, Barr,
both GV([0] and b, are \l' ‘L
received, or none is —
received. Can be GV,[0] = fO(GVO) GV4[1] = fl(G—V{)
iImplemented on existing
network stack, e.g, l ‘l'
TPCI/IP
K /\\b0=b0+1 b1:=b1+1
——(GV,[0], by)! (GV4[1], by)!
Barr, Barrq

Barry = while(by < by) skip; Proof of correctness

%% Software Engineering Institute “ Carnegie Mellon University in paper

Tool Overview

Project webpage (http://mcda.googlecode.com)
« Tutorial (https://code.google.com/p/mcda/wiki/Tutorial)

Verification
 daslc --nodes 3 --seq --rounds 3 --seq-dbl --out tutorial-02.c tutorial-
02.dasl

 cbmc tutorial-02.c (takes about 10s to verify)

Code generation & simulation
 daslc --nodes 3 --madara --vrep --out tutorial-02.cpp tutorial-02.dasl

Model-Driven Verifying Compilation

° g+t

* mcda-vrep.sh 3 outdir ./tutorial-02 ...

—— Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Future Work

Improving scalability and verifying with unbounded number of rounds

Verifying for unbounded number of nodes (parameterized verification)
« Paper at SPIN'2014 Symposium

Asynchronous and partially synchronous network semantics

Scalable model checking
« Abstraction, compositionality, symmetry reduction, partial order reduction

Fault-tolerance, uncertainty, ...
« Combine V&V of safety-critical and mission-critical properties

Model-Driven Verifying Compilation

—== Software Engineering Institute H Carnegie Mellon University Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Contact Information Slide Format

Sagar Chaki

Principal Researcher
SSD/CSC

Telephone: +1 412-268-1436
Email: chaki@sei.cmu.edu

Web
www.sel.cmu.edu
www.sei.cmu.edu/contact.cfm

——— Software Engineering Institute

U.S. Malil

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu

Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

Model-Driven Verifying Compilation

Carnegie Mellon University = Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Synchronous Collision Avoidance Code

MOC_SYNC;

CONST X = 4; CONSTY = 4;

CONST NEXT = 0;
CONST REQUEST = 1;
CONST WATITING = 2;
CONST MOVE = 3;

EXTERN int
MOVE_TO (unsigned char x,

unsigned char y);

NODE uav (id){ ... }

void INIT(){ .. }

void SAFETY { .. }

NODE uav (id)

{
GLOBAL bool lock [X][YI[#N];

LOCAL int state x,y xp,yp xf yf:

void NEXT_XY (){ ..}
void ROUND () {
if(state == NEXT) { ...
state = REQUEST;

} else if(state == REQUEST) { ...

state = WAITING:;

} else if(state == WAITING){ ...

state = MOVE;
} else if(state == MOVE) { ...
state = NEXT;

13}

Software Engineering Institute

INIT
{
FORALL_NODE(id)
state.id = NEXT;
//assign x.id and y.id non-deterministically
//assume they are within the correct range

//assign lock[x.id][y.id][id] appropriately

//nodes don't collide initially
FORALL_DISTINCT_NODE_PAIR (id1,id2)
ASSUME(x.id1 I= x.id2 || y.id1 I= y.id2);

SAFETY {
FORALL_DISTINCT_NODE_PAIR (id1,id2)
ASSERT(x.id1 I= x.id2 || y.id1 1= y.id2);

Model-Driven Verifying Compilation

Carnegie Mellon University = Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

if(state == NEXT) {
//compute next point on route
if(x == xf && y == yf) return;
NEXT_XY():
state = REQUEST;

} else if(state == REQUEST) {
//request the lock but only if it is free
if(EXISTS_OTHER(idp,lock[xpllypllidp] I= 0)) return;
lockxpIlyp1Lid] = 1:
state = WAITING;

} else if(state == WAITING) {
//grab the lock if we are the highest
//id node to request or hold the lock
if(EXISTS_HIGHER(idp, lock[xpllypllidp] = 0)) return;
state = MOVE;

}

Synchronous Collision Avoidance Code

else if(state == MOVE) {
//now we have the lock on (xp,yp)
if(MOVE_TO()) return;
lock[x J[y]lid] = O;
X = Xp.y = YPp.
state = NEXT;
}

Model-Driven Verifying Compilation

Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

